I initially tried Kubuntu for several reasons, but I ran into persistent issues with my Wi-Fi driver.
Eventually, I decided to give EndeavourOS a try. To my surprise, everything ran much better,
and I found Arch Linux to be just as approachable as Ubuntu. After spending hours researching and experimenting,
I put together this short guide to document how I successfully enabled GPU acceleration for PixInsight.
OS: EndeavourOS (Arch Linux)
CPU: 32 × 13th Gen Intel® Core™ i9-13900K
GPU: NVIDIA GeForce RTX 4070 Ti/PCIe/SSE2
Driver: NVIDIA 580.105.08
PixInsight Location: /opt/PixInsight/bin/
Download the local run file:
wget https://developer.download.nvidia.com/compute/cuda/12.5.1/local_installers/cuda_12.5.1_555.42.06_linux.runMake it executable (if needed):
chmod +x cuda_12.5.1_555.42.06_linux.runInstall toolkit only (no driver, no gcc13):
sudo ./cuda_12.5.1_555.42.06_linux.run --silent --toolkit --toolkitpath=/usr/local/cuda-12.5.1 --override
sudo pacman -S --needed git base-develgit clone https://aur.archlinux.org/yay.gitcd yaymakepkg -si
Using yay:
yay -S libxml2-legacyDownload tarball:
wget https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/linux-x86_64/cudnn-linux-x86_64-9.3.0.75_cuda12-archive.tar.xzUnpack:
tar -xvf cudnn-linux-x86_64-9.3.0.75_cuda12-archive.tar.xzCopy headers and libraries:
sudo cp cudnn-linux-x86_64-9.3.0.75_cuda12-archive/include/cudnn*.h /usr/local/cuda-12.5.1/includesudo cp -P cudnn-linux-x86_64-9.3.0.75_cuda12-archive/lib/libcudnn* /usr/local/cuda-12.5.1/lib64sudo chmod a+r /usr/local/cuda-12.5.1/include/cudnn*.h /usr/local/cuda-12.5.1/lib64/libcudnn*
Download the archive Save the libtensorflow-gpu-linux-x86_64.tar.gz file to your home directory (/home/$USER/).
You can download it directly from the official TensorFlow site: https://www.tensorflow.org/install/lang_c
Locate the startup script:
/opt/PixInsight/bin/PixInsight.shEdit the line starting with LD_LIBRARY_PATH
(usually line 7). Update it to:
LD_LIBRARY_PATH=$HOME/tensorflow/lib:/usr/local/cuda-12.5.1:$dirname/lib:$dirnameSave the file.
TensorFlow 2.18 (prebuilt) works seamlessly with CUDA 12.5.1 + cuDNN 9.3.